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Abstract 

Co-Array Fortran, formerly known as F-- ,  is a small extension of Fortran 95 for 
parallel processing. A Co-Array Fortran program is interpreted as if it were 
replicated a number of times and all copies were executed asynchronously. Each 
copy has its own set of data objects and is termed an image. The array syntax of 
Fortran 95 is extended with additional trailing subscripts in square brackets to give a 
clear and straightforward representation of any access to data that is spread across 
images. 

References without square brackets are to local data, so code that can run 
independently is uncluttered. Only where there are square brackets, or where there is 
a procedure call and the procedure contains square brackets, is communication 
between images involved. 

There are intrinsic procedures to synchronize images, return the number of images, 
and return the index of the current image. 

We introduce the extension; give examples to illustrate how clear, powerful, and 
flexible it can be; and provide a technical definition. 

1 Introduction 
We designed Co-Array Fortran to answer the question 'What is the smallest change required to convert Fortran 
95 into a robust, efficient parallel language?'. Our answer is a simple syntactic extension to Fortran 95. It looks 
and feels like Fortran and requires Fortran programmers to learn only a few new rules. 

The few new rules are related to two fundamental issues that any parallel programming model must resolve, 
work distribution and data distribution. Some of the complications encountered with other parallel models, 
such as HPF (Koebel, Loveman, Schrieber, Steele, and Zosel 1994), CRAFT (Pase, MacDonald, and Meltzer 
1994) or OpenMP (1997) result from the intermixing of these two issues. They are different and Co-Array 
Fortran keeps them separate. 

First, consider work distribution. Co-Array Fortran adopts the Single-Program-Multiple-Data (SPMD) 
programming model. A single program is replicated a fixed number of times, each replication having its own 
set of data objects. Such a model is new to Fortran, which assumes a single program executing alone with a 
single set of data objects. Each replication of the program is called an image. Each image executes 
asynchronously and the normal rules of Fortran apply, so the execution path may differ from image to image. 
The programmer determines the actual path for the image with the help of a unique image index by using 
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normal Fortran control constructs and by explicit synchronizations. For code between synchronizations, the 
compiler is free to use all its nomlal optimization techniques, as if only one image is present. 

Second, consider data distribution. The co-army extension to the language allows the programmer to express 
data distribution by specifying the relationship among memory images in a syntax very much like normal 
Fortran array syntax. We add one new object to the language called a co-array. For example, the statement 

real, dimension(n) [*] :: x,y 

declares that each image has two real arrays of size n .  If the statement: 

x(:) = y(:)[q] 

is executed on all images and if q has the same value on each image, the effect is that each image copies the 
array y from image q and makes a local copy in array x .  

Array indices in parentheses follow the normal Fortran rules within one memory image. Indices in square 
brackets provide an equally convenient notation for accessing objects across images and follow similar rules. 
Bounds in square brackets in co-array declarations follow the rules of assumed-size arrays since co-arrays are 
always spread over all the images. 

The programmer uses co-array syntax only where it is needed. A reference to a co-array with no square 
brackets attached to it is a reference to the object in the local memory of the executing image. Since most 
references to data objects in a parallel code should be to the local part, co-array syntax should appear only in 
isolated parts of the code. If not, the syntax acts as a visual flag to the programmer that too much 
communication among images may be taking place. It also acts as a flag to the compiler to generate code that 
avoids latency whenever possible. 

If different sizes are required on different images, we may declare a co-array of a derived type with a 

component that is a pointer array. The pointer component is allocated on each image to have the desired size 
for that image (or not allocated at all, if it is not needed on the image). It is straightforward to access such data 
on another image, for example, 

x(:) = a[p]%ptr(:) 

In words, this statement means 'Go to image p, obtain the the pointer component of variable a, read from the 

corresponding target, and copy the data to the '.local array x ' .  The square bracket is associated with the variable 
a, not with its components. Data manipulation of this kind is handled awkwardly, if at all, in other 
programming models. Its natural expression in co-array syntax places power and flexibility with the 
programmer, where they belong. This technique may be the key to such difficult problems as adaptive mesh 
refinement, which must be solved to make parallel processing on large machines successful. 

Co-Array Fortran was formerly known as F-- ,  pronounced eff-minus-minus. The name was meant to imply a 
small addition to the language, but was often misinterpreted. It evolved from a simple programming model for 
the CRAY-T3D where it was first seen as a back-up plan while the real programming models, CRAFT, HPF, 
and MPI, were developed. This embryonic form of the extension was described only in internal Technical 
Reports at Cray Research (Numrich 1991, Numrich 1994a, Numrich 1994b). In some sense, Co-Array Fortran 
can be thought of as syntax for the one-sided get/put model as represented, for example, in the SHMEM 
Library on the CRAY-T3D/E and on the CRAY Origin 2000. This model has become the preferred model for 
writing one-sided message-passing code for those machines (Numrich, Springer, and Peterson 1994; Sawdey, 
O'Keefe, Bleck, and Nurnrich 1995). But since co-array syntax is incorporated into the language, it is more 
flexible and more efficient than any library implementation can ever be. 

The first informal definition of F- -  (Numrich 1997) was restricted to the Fortran 77 language and used a 
different syntax to represent co-arrays. To remove the limitations of the Fortran 77 language, we extended the 
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F--  idea to the Fortran 90 language (Numrich and Steidel 1997a; Numfich and Steidel 1997b; Numrich, 
Steidel, Johnson, de Dinechin, Elsesser, Fischer, and MacDonald 1997). In these papers, the programming 
model was defined more precisely and an attempt was made to divorce the model from the subconscious 
association of the syntax with physical processors and to relate it more to the logical decomposition of the 
underlying physical or numerical problem. In addition, these papers started to work through some of the 
complexities and idiosyncrasies of the Fortran 90 language as they relate to co-array syntax. This current paper 

is the culmination of that effort. 

In the meantime, portions of Co-Array Fortran have been incorporated into the Cray Fortran 90 compiler and 
various applications have been converted to the syntax (see, for example, Numrich, Reid, and Kim 1998). 

In the next section, we illustrate the power of the language with some simple examples, introducing syntax and 
semantics as we go, without attempting to be complete. Section 3 contains a complete technical specification, 
Section 4 contains improved versions of the codes of Section 2, and in Section 5 we make some comparisons 
with other languages. We conclude with a summary of the features of Co-Array Fortran in Section 6. 
Appendices 1 and 2 explain possible extensions and Appendix 3 shows how the intrinsic sync_memory 
permits the intrinsics sync_team and sync_al I to be constructed in Co-Array Fortran. 

In Section 3, paragraphs labeled as notes are non-normative, that is, they they have no effect on the definition 
of the language. They are there to help the reader to understand a feature or to explain the reasoning behind it. 

2 Simple examples 
In this section, we consider some simple examples. By these examples, we do not mean to imply that we 
expect every programmer who uses co-array syntax to reinvent all the basic communication primitives. The 
examples are intended to illustrate how they might be written with the idea of including them in a library for 
general use and how easy it is to write application codes requiring more complicated communication. 

2.1 Finite differencing on a rectangular grid 

For our first example, suppose we have a rectangular grid with periodic boundary conditions; at each point, we 
want to sum the values at neighbouring points and subtract four times the value at the point (5-point 
approximation to the Laplacian operator). We suppose that the data is distributed as the co-array 
u ( 1 : n row)  [ 1 : n c o l  ], in both the local dimension and the co-dimension. I f n c o l  is equal to the number of 
images, the following procedure is one way to perform the calculation. 

subroutine laplace (nrow,ncol,u) 

integer, intent(in) : : nrow, ncol 

real, intent(inout) :: u(nrow) [*] 

real :: new u(nrow) 

integer : : i, me, left, right 

new_u(1) = u(nrow) + u(2) 

new u(nrow) = u(1) + u(nrow-l) 

new u(2:nrow-l) = u(l:nrow-2) • u(3:nrow) 

me = this_image(u) ! Returns the co-subscript within u 

! that refers to the current image 

left = me-l; if (me == i) left = ncol 

right = me + i; if (me == ncol) right = 1 

call sync_all( (/left,right/) ) ! Wait if left and right 
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!.have not already reached here 

new_u(l:nrow)=new u(l:nrow)+u(l:nrow) [left]+u(l:nrow) [right] 
call sync all( (/left,right/) ) 
u(l:nrow) = new_u(l:nrow) - 4.0*u(l:nrow) 

end subroutine laplace 

In the first part of the procedure, we add together neighbouring values of the array along the local dimension, 
being careful to enforce the periodlic boundary conditions. We place the result in a temporary array because we 
cannot overwrite the original values until the averaging is complete. We obtain the co-subscript of the 
invoking image from the intrinsic function t h i s _ i m a g e  (u) and then enforce the periodic boundary 
conditions across the co-dimension in the same way that we did for the local dimension. The Co-Array Fortran 
execution model is asynchronous SPMD, not synchronous SIMD, so we must synchronize explicitly with the 
intrinsic procedure s y n c  a l  1 to make sure the values of the array on neighbouring images are ready before 
using them. After adding the values from these iimages into the local temporary array, we synchronize a second 
time to make sure the neighbouring images have obtained the original local values before altering them. After 
the second synchronization, each image replaces the data in its local array with the averaged values 
corresponding to the finite difference approximation for the Laplacian operator and returns. 

2.2 Data redistribution 

Our second example comes from the application of fast Fourier transforms. Suppose we have a 3-dimensional 
co-array with one dimension spread across images: a ( 1 : kx ,  1 : ky)  [ 1 : kz  ] and need to copy data into it 
from a co-array with a different dimension spre, ad across images: b ( 1  : k y ,  1 : k z )  [1 : k x ] .  We assume that 
the arrays are declared thus: 

real :: a(kx,ky) [*], b(ky, kz) [*] 

Of course, the number of images must be at least max (kx ,  kz  ). If the number of images is exactly kz ,  the 
following Co-Array Fortran code does what is needed: 

iz = this image(a) 
do ix = i, kx 

do iy = i, ky 
a(ix, iy) = b(iy, iz) [ix] 

end do 
end do 

The outer do construct is executed on each image and it ranges over all the images from which data is needed. 
The inner do construct is a clear representation of the data transfer; it can also be written as the array statement 

a(ix, :) = b(:,iz) [ix] 

In the cycle with ix=i z, only local data transfer takes place. This is permitted, but the statement 

a(iz,:) = b(:,iz) 

might be more efficient in execution than the statement 

a(iz, :) = b(:,iz) [is] 

If the number of images is greater than kz,  the., code will be erroneous on the additional images because of an 
out-of-range subscript. We therefore need to c]~ange the code to: 

iz = this image(a) 
if (iz<=kz) then 

do ix = i, kx 
a(ix, :) = b(:,iz) [ix] 

end do 
end i f 
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2.3 Maximum value of a co-array 

Our next example finds the maximum value of a co-array and broadcasts the result to all the images. On each 
image, the code begins by finding the local maximum. Synchronization is then needed to ensure that all 
images have performed this task before the maximum of the results is computed. We then use the first image to 
gather the local maxima, find the global maximum and scatter the result to the other images. Another 

synchronization is needed so that none of the images leave the procedure with the result in its memory. 

subroutine 
real, intent(in) :: a(:) [*] 
real, intent(out) :: great[*] 
real :: work(num images()) ! 
great = maxval(a(:)) 
call sync_all ! Wait for all 
if(this image(great)==l)then 

work(:) = great[:] ! 
great[:]=maxval(work) ! 

end if 
call sync_all 

end subroutine greatest 

greatest(a,great) ! Find maximum value of a(:) [*] 

Local work array 

other images to reach here 

Gather local maxima 
Broadcast the global maximum 

The work array is needed only on the first image, so storage will be wasted on the other images. If this is 
important, we may use an allocatable array that is allocated only on the first image (see the enhanced version 

in Section 4.3). 

Note that we have used array sections with square brackets in an intrinsic assignment. These may also be used 

in intrinsic operations. Although the processor does not need to do it this way, the effect must be as if the data 
were collected into a temporary array on the current image and the operation performed there. For simplicity 
of implementation, we have restricted this feature to the intrinsic operations and intrinsic assignment. 
However, round brackets can always be employed to create an expression and have the effect of a copy being 

made on the current image. For example, a possible implementation of the example of this section is 

if(this image(a)==l)then 
great[:]=maxval( (a(:) [:]) 

end if 

but this would probably be slow since all the data has to be copied to image 1 and all the work is done by 
image 1. 

2.4 Finite-element example 

We now consider a finite-element example. Suppose each image works with a set of elements and their 
associated nodes, which means that some nodes appear on more than one image. We treat one of these nodes 
as the principaland the rest as 'ghosts'. For each image, we store pairs of indices ( p r i n ( i )  , g h o s t  ( i ) )  
of principals on the image and corresponding ghosts on other images. We group them by the image indices of 
the ghosts. 

In the assembly step for a vector x, we first add contributions from the elements in independent calculations on 
all the images. Once this is done, for each principal and its ghosts, we need to add all the contributions and 
place the result back in all of them. The following is suitable: 
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subroutine assemble(start,prin,ghost,neib,x) 
! Accumulate values at nodes with ghosts on other images 

integer, intent(in) :: start(:), prin(:), ghost(:), neib(:) 
' Node prin(i) is the principal for ghost node ghost(i) on image neib(p), 
! i = start(p), ... start(p+l)-l, p=l,2 ..... size(neib). 

real, intent(inout) :: x(:) [*] 
integer kl,k2,p 
call sync_all (neib) 
do p = l,size(neib) ! Add in contributions from the ghosts 

kl = start(p); k2 = start(p+l)-i 
x(prin(kl:k2)) = x(prin(kl:k2)) + x(ghost(kl:k2)) [neib(p)] 

end do 
call sync_all (neib) 
do p = l,size(neib) ! Update the ghosts 

kl = start(p); k2 = start(p+l)-i 
x(ghost(kl:k2)) [neib(p)] = x(prin(kl:k2)) 

end do 
call sync_all 

end subroutine assemble 

2.5 S u m m i n g  over  the co -d imens ion  o f  a co-array  

We now consider the problem of summing over the co-dimension of a co-array and broadcasting the result to 
all images. A possible implementation is as follLows, using the first image to do all the work: 

subroutine sum_reduce (n, x) 
integer, intent(in) :: n 
real, intent(inout) : : x(n) [*] 
integer p 
call sync_al 1 
! Replace x by the result of summing over the co-dimension 

if ( this_image(x)==l ) then 
do p=2,num images() 

x(:) = x(:) + x(:)[p] 

end do 
do p=2, nun~images ( ) 

x(:) [p] = x(:) 
end do 

end i f 
call sync_al 1 

end subroutine sum_reduce 

2.6 G r o u p i n g  the images  into teams 

If most of a calculation naturally breaks into two independent parts, we can employ two sets of images 
independently. To avoid wasting storage, we use an array of derived type with pointer components that are 
allocated only on those images for which they are needed. For example, the following module is intended for 
a hydrodynamics calculation on the first half of the images. 

module hydro 
type hydro_type 

integer : : nx,ny,nz 
real, pointer : : x(:) ,y(:) ,z(:) 

end type hydro_type 
type(hydro_type) :: hyd[*] 

contains 
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subroutine setup_hydro 

allocate (hyd%x(ix), hyd%y(ly), hyd%z(iz) ) 
call sync_team( (/(i,i=l,num_images()/2)/) ) 

end subroutine setup_hydro 

end module hydro 

Thesubroutine setup_hydroiscalled only ontheimagesl, 2 ..... nun~images()/2.1tallocatesstorage 
and per~rms other initializmions. The cor~sponding main program might have the Arm: 

program main 
use hydro 
use radiation 
real :: residual, threshold = 1.0e-6 
if(this image()<=num_images()/2) then 

call setup_hydro ! Establish hydrodynamics data 
else 

call setup radiation ! Establish radiation data 
end if 
call s!rnc_all 
do ! Iterate 

if(this_image()<=num images()/2) then 
call hydro 

else 
call radiation 

end if 
call sync all 

: ! Code that accesses data from both modules and calculates residual 
if(residual<threshold)exit 

end do 
end program main 

2.7 Wri t ing  a t i led array  to a d irect -access  file 

Suppose an array is distributed over the images so that each image holds a sub-array of the same size, a tile, 
and that a single element halo is added around each tile. The simplest way to write out the file is: 

real :: a(0:ml+l,0:nl+l) [mp,*] ! num images()==mp*np 

inquire(iolength=la) a(l:ml,l:nl) 
open (unit=ll, file= ' fort. ii ' , status= 'new' , action= 'write ' , & 

form= ' unformatted' , access= ' direct ' , recl=la, & 
team=(/ (i, i=l,num_images()) /) 

write(unit=ll,rec=this_image()) a(l:ml,l:nl) 

The keyword team specifies which images are connected to the unit. All the images are writing to distinct 
records in the same file, so there is no need for synchronization. 
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3 Technical specification 

3.1 Program images 

A Co-Array Fortran program executes as if it were replicated a number of times, the number of replications 

remaining fixed during execution of the program. Each copy is called an image and each image executes 
asynchronously. A particular implementation of Co-Array Fortran may permit the number of images to be 

chosen at compile time, at link time, or at execute time. The number of images may be the same as the number 
of physical processors, or it may be more, or it may be less. The programmer may retrieve the number of 
images at run time by invoking the intrinsic function n u r c ~ i m a g e s  ( ). Images are indexed starting from one 
and the programmer may retrieve the index of the invoking image through the intrinsic function 

t h i s  i m a g e  ( ). The programmer controls the execution sequence in each image through explicit use of 
Fortran 95 control constructs and through explicit use of an intrinsic synchronization procedures. 

3.2 Specifying data objects 

Each image has its own set of data objects, all of which may be accessed in the normal Fortran way. Some 
objects are declared with co-dimensions in square brackets immediately following dimensions in parentheses 
or in place of them, for example: 

real, dimension(20) [20,*] :: a 

real :: c[*], d[*] 

character :: b(20) [20,0:*] 

integer :: ib(lO) [*] 

type (interval) : : s 

dimension :: s[20,*] 

Unless the array is allocatable (Section 3.6), the form for the dimensions in square brackets is the same as that 
for the dimensions in parentheses for an assumed-size array. The set of objects on all the images is itself an 
array, called a co-array,  which can be addressed with array syntax using subscripts in square brackets 
following any subscripts in parentheses (round brackets), for example: 

a(5) [3,7] = ib(5) [3] 

d[3] = c 

a(:) [2,3] : c[l] 

We call any object whose designator includes square brackets a co-array subobject; it may be a co-array 
element, a co-array section, or a co-array structure component. The subscripts in square brackets are 
mapped to images in the same way as Fortran array subscripts in parentheses are mapped to memory locations 
in a Fortran 95 program. The subscripts within an array that correspond to data for the current image are 
available from the intrinsic this_image with the co-array name as its argument. 

Note: On a shared-memory machine, we expect a co-array to be implemented as if it were an array of higher 

rank. The implementation would need to support the declaration of arrays of rank up to 14. On a 
distributed-memory machine with one physical processor for each image, a co-array may be stored from 

the same memory address in each physical processor. On any machine, a co-array may be implemented 
in such a way that each image can calculate the memory address of an element on any other image. 

The rank, extents, size, and shape of a co-array or co-array subobject are given as for Fortran 95 except that 
we include both the data in parentheses and the data in square brackets. The local rank, local extents, local 
size, and local shape are given by ignoring the data in square brackets. The co-rank, co-extents, co-size, and 
co-shape are given from the data in square brackets. For example, given the co-array declared thus 
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real, dimension(10,20) [20,5,*] :: a 

a ( : , : ) [ : , : , 1 : 15] has rank 5, local rank 2, co-rank 3, shape (/I0,20,20,5,15/), local shape (/10,20/), and 

co-shape (/20,5,15/). 

The co-size of a co-array is always equal to the number of images. If the co-rank is one, the co-array has a 

co-extent equal to the number of images and it has co-shape ( / num i m a g e s  ( ) / ). If the co-rank is greater 
than one, the co-array has no final extent, no final upper bound, and no co-shape (and hence no shape). 

Note: We considered defining the final extent when the co-rank is greater than one as the number of images 
divided by the product of the other extents, truncating towards zero. We reject this, since it means, for 
example, that a ( : , : ) [ : , : , : ] would not always refer to the whole declared co-array. 

The local rank and the co-rank are each limited to seven. The syntax automatically ensures that these are the 

same on all images. The rank of a co-array subobject (sum of local rank and co-rank) must not exceed seven. 

Note: The reason for the limit of seven on the rank of a co-array subobject is that we expect early 
implementations to make a temporary local copy of the array and then rely on ordinary Fortran 95 

mechanisms. 

For a co-array subobject, square brackets may never precede parentheses. 

Note: For clarity, we recommend that subscripts in parentheses are employed whenever the parent has 

nonzero local rank. For example, a [ : ] is not as clear as a ( : ) [ : ]. 

A co-array must have the same bounds (and hence the same extents) on all images. For example, the 
subroutine 

subroutine solve(n,a,b) 

integer : : n 

real :: a(n)[*], b(n) 

must not be called on one image with n having the value 1000 and on another with n having the value 1001. 

A co-array may be allocatable: 

subroutine solve(n,a,b) 
integer : : n 

real :: a(n) [*], b(n) 

real,allocatable : : work(:) [:] 

Allocatable arrays are discussed in Section 3.6. 

There is no mechanism for assumed-co-shape arrays (but see Appendix 1, which describes a possible 

extension). A co-array is not permitted to be a pointer (but see Appendix 2, which describes another possible 
extension). Automatic co-arrays are not permitted; for example, the co-array w o r k  in the above code fragment 
is not permitted to be declared thus 

subroutine solve(n,a,b) 

integer :: n 

real :: a(n) [*], b(n) 

real :: work(n)[*] ! Not permitted 

Note: Were automatic co-arrays permitted, for example, in a future revision of the language, they would pose 
problems to implementations over consistent memory addressing among images. It would probably be 
necessary to require image synchronization, both before and after memory is allocated on entry and both 
before and after memory is deallocated on return. 

A co-array is not permitted to be a constant. 

Note: This restriction is not necessary, but the feature would be useless since each image would hold exactly 
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the same value. We see no point in insisting that vendors implement such a feature. 

A DATA statement initializes only local data. Therefore, co-array subobjects are not permitted in DATA 
statements. For example: 

real :: a(10) [*] 
data a(1) /0.0/ ! Permitted 
data a(1)[2] /0.0/ ! Not permitted 

Unless it is allocatable or a dummy argument, a co-array always has the SAVE attribute. 

The image indices of a co-array always form a sequence, without any gaps, commencing at one. This is true 
for any lower bounds. For example, for the an'ay declared as 

real :: a(10,20) [20,0:5,*] 

a(:, :) [i,0,i] refers to the rank-two arraya(:, :) in image one. 

Note: If a large array is needed on a subset of images, it is wasteful of memory to specify it directly as a 
co-array. Instead, it should be specified as a pointer component of a co-array and allocated only on the 
images on which it is needed (we expect to use an allocatable component in Fortran 2000). 

Co-arrays may be of derived type but components of derived types are not permitted to be co-arrays. 

Note: Were we to allow co-array components, we would be confronted with references such as z [p]  %x [ q ] .  

A logical way to read such an expression would be: go to image p and find component x on image q. 
This is logically equivalent to z [q]  %x. 

3.3 Accessing data objects 

Each object exists on every image, whether or not it is a co-array. In an expression, a reference without square 

brackets is always a reference to the object on the invoking image. For example, size (b) for the co-array b 
declared at the start of Section 3.2 returns its local size, which is 20. 

The subscript order value of the co-subscript list must never exceed the number of images. For example, if 
there are 16 images and the the co-array a is declared thus 

real :: a(10) [5,*] 

a ( : ) [ 1 , 4  ] is valid since it has co-subscript order value 16, but a ( : ) [ 2 , 4  ] is invalid. 

Two arrays conform if they have the same shape. Co-array subobjects may be used in intrinsic operations and 
assignments in the usual way, for example, 

b(:,l:m) = a[:,l:m]*c(:) [l:m] ! All have rank two. 
b(j,:) = a[:,k] ' Both have rank one. 
c[l:p:3] = d(l:p:3)[2] ! Both have rank one. 

Square brackets attached to objects in an expression or an assignment alert the reader to communication 
between images. Unless square brackets appear explicitly, all expressions and assignments refer to the 
invoking image. Communication may take place, however, within a procedure that is referenced, which might 
be a defined operation or assignment. 

The rank of the result of an intrinsic operation is derived from the ranks of its operands by the usual rules, 
disregarding the distinction between local rank and co-rank. The local rank of the result is equal to the rank. 
The co-rank is zero. Similarly, a parenthesized co-array subobject has co-rank zero. For example 
2 . 0  *d ( 1 : p : 3 ) [ 2 ] and (d  ( 1 : p : 3 ) [ 2 ] ) each have rank 1, local rank 1, and co-rank 0. 

10 
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Note: Whether the executing image is one of those selected in square brackets has no bearing on whether the 

executing image evaluates the expression or assignment. For example, the statement 

p[6] = 1 

is executed by every image, not just image 6. If code is to be executed selectively, the Fortran IF or 

CASE statement is needed. For example, the code 

real : : p[*] 

if (this_image(p) ==i) then 
read (6, *)p 
p[:] = p 

end i f 
call sync_al 1 

employs the first image to read data and broadcast it to other images. 

3.4 Procedures 

A co-array subobject is permitted only in intrinsic operations, intrinsic assignmentS, and input/output lists (but 

see Appendix 1 for a possible extension). 

If a dummy argument has co-rank zero, the value of a co-array subobject may be passed by using parentheses 

to make an expression, for example, 

c(l:p:2) = sin( (d[l:p:2]) ) 

Note: The behaviour is as if a copy of the section is made on the local image and this copy is passed to the 

procedure as an actual argument. 

If a dummy argument has nonzero co-rank, the co-array properties are defined afresh and are completely 
independent of those of the actual argument. The interface must be explicit. The actual argument must be the 
name of a co-array or a subobject of a co-array without any square brackets, vector-valued subscripts, or 
pointer component selection; any subscript expressions must have the same value on all images. If the dummy 
argument has nonzero local rank and its local shape is not assumed, the actual argument shall not be an array 
section, involve component selection, be an assumed-shape array, or be a subobject of an assumed-shape 
array. 

Note: These rules are intended to ensure that copy-in or c0py-out is not needed for an argument of nonzero 

co-rank, and that the actual argument may be stored from the same memory address in each image. 

A function result is not permitted to be a co-array. 

A pure or elemental procedure is not permitted to contain any Co-Array Fortran extensions. 

The rules for resolving generic procedure references remain unchanged. 

3.5 Sequence association 

COMMON and EQUIVALENCE statements are permitted for co-arrays and specify how the storage is 
arranged on each image (the same for every one). Therefore, co-array subobjects are not permitted in an 
EQUIVALENCE statement. For example 

equivalence (a[10],b[7]) ! Not allowed (compile-time constraint) 

is not permitted. Appearing in a COMMON and EQUIVALENCE statement has no effect on whether an 
object is a co-array; it is a co-array only if declared with square brackets. An EQUIVALENCE statement is not 
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permitted to associate a co-array with an object that is not a co-array. For example 

integer : : a,b[*] 
equivalence (a,b) ! Not allowed (compile-time constraint) 

is not permitted. A COMMON block that contains a co-array always has the SAVE attribute. Which objects in 
the COMMON block are co-arrays may vary between scoping units. Since blank COMMON may vary in size 

between scoping units, co-arrays are not permitted in blank COMMON. 

3.6 Allocatable arrays 

A co-array may be allocatable. The ALLOCATE statement is extended so that the co-extents can be specified, 
for example, 

real, al!ocatable : : a(:) [:] , s[:, :] 

allocate (array(10) [*], s[34,*] ) 

The upper bound for the final co-dimension must always be given as an asterisk and values of all the other 
bounds are required to be ~he same on all images. For example, the following are not permitted 

allocate(a(num images())) ! Not allowed (compile-time constraint) 
allocate(a(this_image()) [*] ) ! Not allowed (run-time constraint) 

There is implicit synchronization of all images in association with each ALLOCATE statement that involves 

one or more co-arrays. In, ages do not commence executing subsequent statements until all images finish 
execution of an ALLOCATE statement for the same set of co-arrays. Similarly, for DEALLOCATE, all 
images delay making the deallocations until they are all about to execute a DEALLOCATE statement for the 
same set of co-arrays. 

Note: These rules are needed to permit all images to store and reference the data consistently. Depending on 
the implementation, images may need to synchronize both before and after memory is allocated and both 

before and after memory is deallocated. This synchronization is completely separate from those obtained 
by calling sync al'l and sync team (see Sections 3.8 and 3.9). 

An allocatable co-array without the SAVE attribute must not have the status of currently allocated if it goes out 

of scope when a procedure is exited by execution of a RETURN or END statement. 

When an image executes an allocate statement, no communication is involved apart from any required for 
synchronization. The image allocates the local part and records how the corresponding parts on other images 
are to be addressed. The compiler, except perhaps in debug mode, is not required to enforce the rule that the 
bounds are the same on all images. Nor is the compiler responsible for detecting or resolving deadlock 
problems. For allocation of a co-array that is local to a recursive procedure, each image must descend to the 
same level of recursion or deadlock may occur. 

3.7 Array pointers 

A co-array is not permitted to be a pointer (but see Appendix 2, where a possible extension is described). 

A co-array may be of a derived type with pointer components. For example, if p is a pointer component, 
z [ 2 ] %p is a reference to the target of component p of z on image i .  To avoid references with co-array syntax 
to data that is not in a c0-array, we limit each pointer component of a co-array to the behaviour of an 
allocatable component of a co-array: 

1. a pointer component of a co-array is not permitted on the left of a pointer assignment statement 
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(compile-time constraint), 

2. a pointer component of a co-array is not permitted as an actual argument that corresponds to a pointer 
dummy argument (compile-time constraint), and 

3. if an actual argument of a type with a pointer component is part of a co-array and is associated with a 
dummy argument that is not a co-array, the pointer association status of the pointer component must not 
be altered during execution of the procedure (this is not a compile-time constraint). 

To avoid hidden references to co-arrays, the target in a pointer assignment statement is not permitted to be any 
part of a co-array. For example, 

q => z[i]%p ! Not allowed (compile-time constraint) 

is not permitted. Intrinsic assignments are not permitted for co-array subobjects of a derived type that has a 
pointer component, since they would involve a disallowed pointer assignment for the component: 

z[i] = z ! Not allowed if Z has a pointer 
z = z[i] ! component (compile-time constraint) 

Similarly, it is legal to allocate a co-array of a derived type that has pointer components, but it is illegal to 
allocate one of those pointer components on another image: 

type(something), allocatable :: t[:] 

allocate(t[*]) ! Allowed 
allocate (t%ptr (n)) ! Allowed 
allocate(t[q]%ptr(n)) ! Not allowed (compile-time constraint) 

3.8 Execution control 

Most of the time, each image executes on its own as a Fortran 95 program without regard to the execution of 
other images. It is the programmer's responsibility to ensure that whenever an image alters co-array data, no 
other image might still need the old value. Also, that whenever an image accesses co:array data, it is not an old 
value that needs to be updated by another image. The programmer uses invocations of the intrinsic 
synchronization procedures to do this, and the programmer should make no assumptions about the execution 
timing on different images. This obligation on the programmer provides the Compiler with scope for 
optimization• When constructing code for execution on an image, it may assume that the image is the only 
image in execution until the next invocation of one of the intrinsic synchronization pt'ocedures and thus it may 
use all the optimization techniques available to a standard Fortran 95 compiler. 

In particular, if the compiler employs temporary memory such as cache or registers (or even packets in transit 
between images) to hold co-array data, it must copy such data to memory that can be accessed by another 
image to make it visible to it. Also, if another image changes the co-array data, the executing image must 
recover the data from global memory to the temporary memory it is using• The intrinsic procedure 
syn¢.. . .memory is provided for both purposes. It is concerned only with data held :in temporary memory on 
the executing image for co-arrays in the local scope. Given this fundamental intriflsic procedure, the other 
synchronization procedures can be programmed in Co-Array Fortran (see Appendix 3), but the intrinsic 
versions, which we describe next, are likely to be more efficient. In addition, the programmer may use it to 
express customized synchronization operations in Co-Array Fortran. 

Note: A compiler can hold co-arrays in temporary storage, such as cache or registers, between calls to 
sync memory. 
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If data calculated on one image are to be accessed on another, the first image must call sync_memory after 

the calculation is complete and the second must call s y n c  m e m o r y  before accessing the data. 
Synchronization is needed to ensure that s y n c  meraory  is called on the first before s y n c  m e m o r y  is called 

on the second. 

Note: If the local part of a co-array or a subobject of it is an actual argument corresponding to a dummy 
argument of zero co-rank, a copy may be passed to the procedure. To avoid the possibility of the original 
being altered by another image after the copy has been made, a synchronization may be needed ahead of 
the procedure invocation. Similarly, a synchronization is needed after return before any other image 
accesses the result. 

The subroutine s y n c _ t e a m  provides synchlronization for a team of images. The subroutine s y n c  a l  1 (see 

Section 3.10) provides a shortened call for [he important case where the team contains all the images. Each 
invocation of sync_team or sync_all has the effect of sync_memory. The subroutine sync_all is 

not discussed further in this section. 

For each invocation of s y n c  t e a m  on one image of a team, there shall be a corresponding invocation of 
s y n c _ t e a m  on every other image of the team. The n th invocation for the team on one image corresponds to 

the n th invocation for the team on each other image of the team, n = 1, 2 . . . . .  The team is specified in an 
obligatory argument t eam.  

Note: Corresponding calls usually arise from a single statement, but this is not always the case. Some images 

may be executing different code that still needs synchronization. An example is given in Section 4.5. 

The subroutine also has an optional argument w a i t .  If this argument is absent from a call on one image it 
must be absent from all the corresponding calls on other images of the team. If w a i t  is absent, each image of 
the team waits for all the other images of the team to make corresponding calls. If w a i t  is present, the image 
is required to wait only for the images specified in w a i t  to make corresponding calls. 

Note: No information is available about whether an action on one image occurs before or after an action on 
another image unless one is executed ahead of a synchronization call and the other is executed behind the 
corresponding synchronization call on the other. For example, while one image executes the statements 
between two invocations of s y n c  a l l ,  another image might be out of execution.. Here is a example 
that imposes the fixed order 1, 2 .... on images: 

me = this_image ( ) 
if(me>l) call sync_team( me-i ) 

p[6] = p[6] + 1 
if (me<num_images ( ) ) call sync_team( me+l ) 

Without a further call of sync_memory, the full result is available only on the last image. 

Teams are permitted to overlap, but the following rule is needed to avoid any possibility of deadlock. If a call 
for one team is made ahead of a call for another team on a single image, the corresponding calls shall be in the 
same order on all images in common to the two teams. 

Note: The presence of the optional argument w a i t  allows the invoking image to continue execution without 
waiting for all the others in cases where it does not need data from all the others. Judicious use of this 

optional argument can improve the overall efficiency substantially. Implementations, however, are not 
required to cause immediate continued execution. Implementations for machines with an efficient 
hardware barrier, for example, may choose to wait for the whole team, which certainly more than 
satisfies the requirement that the members of w a i t  have arrived. 

The intrinsic s y n c _ f i l e  plays a similar role for file data to that of s y n c  m e m o r y  for co-array data. 
Because of the high overheads associated with file operations, s y n c _ t e a m  does not have the effect of 
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sync_file. If data written by one image to a file is to be read by another image without closing the 
connection and re-opening it on the other image, calls of s y n c _ f i l e  on both images are needed (details in 
Section 3.9). 

To avoid the need for the programmer to place invocations of s y n c  m e m o r y  around many procedure 
invocations, these are implicitly placed around any procedure invocation that might involve any reference to 
s y n c  memory .  Formally, we define a caf procedure as 

1. an external procedure; 

2. a dummy procedure; 

3. a module procedure that is not in the same module; 

4. sync_all, sync_team, sync file, start_critical, end_critical; or 

5. a procedure whose scoping unit contains an invocation of sync_memory or a caf procedure reference. 

Invocations of s y n c _ m e m o r y  are implicitly placed around every caf procedure reference. 

Exceptionally, it may be necessary to limit execution of a piece of code to one image at a time. Such code is 
called a critical section. We provide the subroutine start_critical to mark the commencement of a 
critical region and the subroutine e n d _ c r i t i c a l  to mark its completion. Both have the effect of 
s y n c _ m e m o r y .  Each image maintains an integer called its critical count. Initially, all these counts are zero. 
On entry to s t a r  t _ c r i  t i c a l ,  the image waits for the system to give it permission to continue, which will 
only happen when all other images have zero critical counts. The image then increments its critical count by 
one and returns. Having these counts permits nesting of critical regions. On entry to e n d _ c r i t i c a l ,  the 
image decrements its critical count by one and returns. We have not found a way to program these subroutines 
in Co-Array Fortran. 

Note: Actions inside a critical region on one image are always separated from actions inside a critical regions 
on another, but one image could be inside a critical region while another is simultaneously executing 
statements outside a critical region. In the following 

me = this_image () 
call start_critical 

p[6] = p[6] + 1 
call endcritical 
if (me==l) then 

call sync_all( (/ (i, i=l,nun~images()) /) ) 
else 

call sync_all( me ) 
endi f 

the critical region guarantees atomic update of p [6], but the s y n c _ a l l  is required to make the full 
result available on image 1. 

The effect of a STOP statement is to cause all images to cease execution. If a delay is required until other 
images have completed execution, a synchronization statement should be employed.  
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3.9 Input/output 

Most of the time, each image executes its own read and write statements without regard for the execution of 
other images. However, Fortran 95 input and output processing cannot be used from more than one image 
without restrictions unless the images reference distinct file systems. Co-Array Fortran assumes that all images 
reference the same file system, but it avoids the problems that this can cause by specifying a single set of I/O 
units shared by all images and by extending the file connection statements to identify which images have 

access to the unit. 

It is possible for several images to be connected on the same unit for direct-access input/output. The intrinsic 
sync_file may be used to ensure that any changed records in buffers that the image is using are copied to 
the file itself or to a replication of the file that other images access. This intrinsic plays the same role for I/O 

buffers as the intrinsic s y n c _ m e m o r y  does for temporary copies of co-array data. Execution of s y n c  f i l e  
also has the effect of requiring the reloading of I/O buffers in case the file has been altered by another image. 
Because of the overheads of I/O, s y n c _ f i l e  applies to a single file. 

It is possible for several images to to be connected on the same unit for sequential output. The processor shall 

ensure that once an image commerices transferring the data of a record to the file, no other image transfers data 

to the file until the whole record has been transferred. Thus, each record in an external file arises from a single 

image. The processor is permitted to hold the data in a buffer and transfer several whole records on execution 
of sync file. 

Note: sync_file is required only when a record written by one image is read by another or when the 

relative order of writes from images is important. Without a s i , , n c _ f i l e ,  all writes could be buffered 
locally until the file is closed. If two images write to the same record of a direct-access file, it  is the 

programmers responsibility to separate the writes by appropriate s y n c  f i l e  calls and image 
synchronization. This is a consequence of the need to make no assumptions about the execution timing 
on different images. 

The I/O keyword TEAM is used to specify an integer rank-one array, connect_team, for the images that 
are associated with the given unit. All elements of c o n n e c t _ t e a m  shall have values between 1 and 
n u r a _ i m a g e s  ( ) and there shall be no repeated values. One element shall have the value t h i  s _ i m a g e  ( ) .  
The default c o n n e c t _ t e a m  is ( / t h i s _ i m a g e  ( ) / ). 

The keyword TEAM is a connection specifier for the OPEN statement. All images in c o n n e c t _ t e a m ,  and 
no others, shall invoke OPEN with an identical connection-spec-list. There is an implied call to a y n c _ t e a m  
with the single argument c o n n e c t _ t e a m  before and after the OPEN statement. The OPEN statement 
connects the file on the invoking images only, and the unit becomes unavailable on all other images. If the 
OPEN statement is associated with a processor dependent file, the f i le  is the same for all images in 

c o n n e c t _ t e a m .  If c o n n e c t _ t e a m  contains more than one image, the OPEN shall have 
ACCESS=DIRECT or ACTION=WRITE. 

An OPEN on a unit already connected to a file must have the same c o n n e c t _ t e a m  as currently in effect. 

A file shall not be connected to more than one unit, even if the c o n n e c  t _ t e a m s  for the units have no images 
in common. 

Pre-connected units that allow sequential read shall be accessible on the first image only. All other 
pre-connected units have a c o n n e c t _ t e a m  containing all the images. 

Note: The input unit identified by * is therefore only available on image 1. 

CLOSE has a TEAM= specifier. If the unit ,exists and is connected on more than one image, the CLOSE 
statement must have the same c o n n e c t _ t e a m  as currently in effect. There is an implied call to 
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sync_file for the unit before CLOSE. There are implied calls to sync_team with single argument 
c o n n e c t _ t e a m  before and after the implied s y n c  f i l e  and before and after the CLOSE. 

BACKSPACE, REWIND, and ENDFILE have a TEAM= specifier. If the unit exists and is connected on at 
least one image, the file positioning statement must have the same c o n n e c t _ t e a m  as currently in effect. 
There is an implied call to s y n c  f i l e  for the unit before the file positioning statement. There are implied 
calls to sync_team with single argument connect_team before and after the implied sync_file and 
before and after the file positioning statement. 

A companion paper (Wallcraft, Numrich and Reid 1998) is in preparation to discuss Co-Array Fortran I/O in 
more detail. 

3.10 Intrinsic procedures 

Co-Array Fortran adds the following intrinsic procedures. Only num_images, log2_images, and 

rein_images are  permitted in specification expressions. None are permitted in initialization expressions. We 
use italic square brackets [ ] to indicate optional arguments. 

e n d c r i t i c a l  ( ) is a subroutine for limiting synchronous execution. Each image holds an integer called 
its critical count. On entry, the count for the image shall be positive. The subroutine decrements this 
count by one .  end_critical has the effect of sync_memory. 

l o g 2 _ i m a g e s  ( ) returns the base-2 logarithm of the number of images, truncated to an integer. It is an 
inquiry function whose result is a scalar of type default integer. 

nura i m a g e s  ( ) returns the number of images. It is an inquiry function whose result is a scalar of type 
default integer. 

rem_images ( ) returns mod (num_images ( ,2 * * l og2_images ( ) ). It is an inquiry function whose 

result is a scalar of type default integer. 

s t a r t c r i t i c a l ( )  is a subroutine for limiting synchronous execution. Each image holds an integer 
called its critical count. Initially all these counts are zero. The image waits for the system to give it 

permission to continue, which will only happen when all other images have zero critical counts. The 
image then increments its critical count by one and returns, s t a r t _ c r i t i c a l  has the effect of 
sync_memory. 

sync_all(/wait]) is a subroutine that synchronizes all images, sync_all() is treated as 

sync_team ( al i ) and sync_al i (wait ) is treated as sync_team ( al i, wait ), where al i has 
the value (/ (i,i:l,num_images()) /). 

sync_al i ([wait]) has the effect of sync_memory. 

sync_file(unit) is a subroutine for marking the progress of input-output on a unit. unit is an 

INTENT(IN) scalar argument of type integer and specifies the unit. The subroutine affects only the data 
for the file connected to the unit. If the unit is not connected on this image or does not exist, the 
subroutine has no effect. Before return from the subroutine, any file records that are held by the image in 
temporary storage and for which WRITE statements have been executed since the previous call of 
s y n c _ f i l e  on the image (or since execution of OPEN in the case of the first s y n c  f i l e  call) shall 
be placed in the file itself or a replication of the file that other images access. The first subsequent access 

by the image to file data in temporary storage shall be preceded by data recovery from the file itself or its 
replication. If the unit is connected for sequential access, the previous WRITE statement shall have been 
for advancing input/output. 
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s y n c _ t e a m  ( t e a m  [,  w a i t l )  is a subroutine that synchronizes images, t e a m  is an INTENT(IN) argument 

that is of type integer and is scalar or of rank one. The scalar case is treated as if the argument were the 

array ( / t h i s  i m a g e  ( ) ,  t e a m / )  ; in this case, t e a m  must not have the value t h i s  i m a g e  ( ). All 

elements of t e a m  shall have values in the range 1 _< t e a m  ( i ) _< n u r r L i m a g e s  ( ) and there shall be no 

repeated values. One element of t e a m  shall have the value t h i s _ i m a g e  ( ). w a i t  is an optional 

INTENT(IN) argument that is of type integer and is scalar or of rank one. Each element, if any, of w a i t  

shall have a value equal to that of an element of t eam.  The scalar case is treated as if the argument were 

the array ( / w a i t  / ). 

The argument t e a m  specifies a team of images that includes the invoking image. For each invocation of 

sync_team on one image, there shall be a corresponding invocation of sync_team for the same team 
on every other image of the team. The n 'h invocation for the team on one image corresponds to the n th 

invocation for the team on each other inmge of the team, n = 1, 2 . . . . .  If a call for one team is made ahead 

of a call for another team on a single image, the corresponding calls shall be in the same order on all 

images in common to the two teams. 

If w a i t  is absent on one image it must be absent in all the corresponding calls on the other images of the 

team. In this case, w a i t  is treated as if it were equal to t e a m  and all images of the team wait until all 

other images of the team are executing corresponding calls. If w a i t  is present, the image waits for all 

the images specified by w a i t  to execute corresponding calls. 

sync_team (team/, wait]) has the effect of sync_memory. 

s y n c j n e m o r y  ( ) is a subroutine for marking the progress of the execution sequence. Before return from the 

subroutine, any co-array data that is accessible in the scoping unit of the invocation and is held by the 

image in temporary storage shall be placed in the storage that other images access. The first subsequent 

access by the image to co-array data in this temporary storage shall be preceded by data recovery from 

the storage that other images access. 

Note: Temporary storage includes registers and cache, but could also include network packets in transit 

between nodes of a distributed memory machine. 

t h i s _ i m a g e  ( •ar ray• ,  d im] ] )  returns the index of the invoking image, or the set of co-subscripts of 

a r r a y  that denotes data on the invoking image. The type of the result is always default integer. There 

are four cases: 

Case (i). 

Case (ii). 

Case (iii). 

Case (it,). 

If a r r a y  is absent, the result is a scalar with value equal to the index of the invoking image. It is 

in the range 1, 2 ..... n u r a _ i m a g e s  ( ) .  

If array is present with co-rank 1 and dim is absent, tile result is a scalar with value equal to 

co-subscript of the element of a r r a y  that resides on the invoking image. 

If array is present with co-rank greater than 1 and dim is absent, the result is an array of size 

equal to the co-rank of a r r a y .  Element k of the result has value equal to co-subscript k of the 

element of a r r a y  that resides on the invoking image. 

If array and dim are present, the result is a scalar with value equal to co-subscript dim of the 
element of a r r a y  that resides on the invoking image. 
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4 Improved versions of the examples 
In this section, we revisit some of the examples of Section 2, to illustrate how co-array syntax may be used to 
extend the scope or to improve the execution performance. 

4.1 Finite differencing on a rectangular grid 

We begin by extending the example of Section 2.1 to three dimensions, with two dimensions spread over 
images. This illustrates the convenience of having co-arrays with more than one co-dimension. 

subroutine laplace (nrow,ncol,nlevel,u) 

integer, intent(in) :: nrow, ncol, nlevel 

real, intent(inout) :: u(nrow) [ncol,*] 

real :: new_u(nrow) 

integer :: i, me(2), left, right, up, 

new_u(1) = u(nrow) + u(2) 

new_u(nrow) = u(1) + u(nrow-l) 

new_u(2:nrow-l) = u(l:nrow-2) + u(3:nrow) 

me = this_image(u) 

left = me(1)-l; if (me(l) == i) left = ncol 

right = me(l) + i; if (me(l) == ncol) right = 1 

down : me(2)-l; if (me(2) == i) down = nlevel 

up = me(2) + i; if (me(2) == nlevel) up = 1 
call sync_all 

down 

n e w . _ u ( l : n r o w ) = n e w . _ u ( l : n r o w ) + u ( l : n r o w )  [ l e f t , m e ( 2 ) ] + u ( l : n r o w )  [ r i g h t , m e ( 2 ) ] &  
+u(l:nrow) [me(1),down)]+u(l:nrow) [me(1),up] 

call sync_all 

u(l:nrow) = new_u(l:nrow) - 6.0*u(l:nrow) 
end subroutine laplace 

4.2 Data redistribution 

The code of Section 2.2 will lead to bottlenecks since all images will begin by accessing data on the first 
image. We can c i r c u m v e n t  this: 

iz = this_image(a) 

if (iz<=kz) then 

do i = i, kx-i 

ix = iz + i; if (ix>kx) ix = ix - kx 

a(ix, :) = b(:,iz) [ix] 
end do 

a(iz, :) = b(:,iz) 
end i f 

Each image begins by accessing its upper neighbour and then continues in ascending order, with wrap-around, 
until all required images are accessed. Also, we have taken the opportunity to avoid square brackets for the 
local transfer. Note that we again have a very clear representation of the action required. 

Statements like those that set i x  in this example, or the equivalent i x = m o d  ( i z + i - 1 ,  kx)  +1, are often used 
in Co-Array Fortran programs to load balance remote memory operations. The value of kx  is often 
num_images (). 
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4.3 M a x i m u m  va lue  o f  a co-array  sect ion 

Dummy arguments may be co-a~ays, but to ease the implementation task no co-~nk or co-shape information 
is t r a n s ~ e d  as part of the co-array itself. Where such in~rmation is required, other Fortran mechanisms must 
be used. For example, we may al~r the example of Section 2.3 to 

subroutine greatest(first,last,a,great) 
[ Find maximum value of a(:) [first:last] 

integer, intent(in) :: first, last 
real intent(in) :: a(:) [*] 
real intent(out) :: great[*] 

! Place result in great[first:last] 
real allocatable :: work(:) ! Local work array 
integer :: i, this 
this = this_image(great) 
if (this>=first .and. this<=last) then 

great = maxval(a) 
call sync_team( (/(i, i:first,last)/) ) 
if(this==first)then 

allocate (work(first:last)) 
work = great[first:last] ! Gather local maxima 
great[first:last]=maxval(work) ! Scatter global maximum 
deallocate (work) 

end if 
call sync_team( (/(i, i:first,last)/) ) 

end if 
end subroutine greatest 

Here, we have used the intrinsic sync_team to synchronize a subset of images by using an ~ray constructor 
to give it a list of image indices. If we w e n  to attempt to synchronize all images, deadlock would result since 
the call is made only for the selected images. 

4.4 S u m m i n g  o v e r  the  c o - d i m e n s i o n  o f  a co -array  (1) 

A better implementation of the example of Section 2.5 involves all the images in Iogzn p stages, where np is 
the number of  images. At the beginning of step k of the new algorithm, the images will be in evenly-spaced 
groups of length or= 2 k-~ . Each image will hold the sum over its a group. New groups are formed from groups 
l and 2, 3 and 4, etc. Each image is partnered by an image in the same new group at a distance a, exchanges 
data with its partner, then performs a summation. After this, each image will hold the sum over images of its 
new group. This continues until all images are in one group. Assuming that the number of images is an integral 
power of 2, the following code suffices: 

subroutine sum_reduce(x) 
real, intent(inout) :: x(:) [*] 
' Replace x by the result of summing over the co-dimension 
real work(size(x)) 
integer k,my_partner,me,span 
me = this_image(x) 
span = 1 
do k=l,log2 images() 

if (rood(me-l, 2*span) <span) then 
my_partner = me + span 

else 

my_partner = me - span 
end if 
call sync_team(my_partner) 
work(:) = x(:) [my_partner] 

call sync team(my_partner) ! Do not change x until we are sure 
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x(:) = x(:) + work(:) 

span = span*2 

end do 
end subroutine sun.reduce 

that the partner has the old value 

x ( : )  
else if 

call 

end if 

4.5 S u m m i n g  over  the c o - d i m e n s i o n  o f  a co-array  (2) 

If the number of images is not an integral power of 2, the code is more complicated. Let the number be 21' + r, 

with r< 2 p. The value p is returned by log2 iraages ( ) and the value r is returned by rein_images ( ). 
The main loop is similar, but is restricted to the first m = 2 p images. We begin by adding the data of  the last r 
images into the first r: 

m = num_images() - rein images() 

if (me <= rem_images ( ) ) then 

call sync team(me+m) 

: x(:) + x(:)[me+m] 

(me>m) then 

sync_team (me-m) 

The invocation of sync_team in the else clause is needed to keep numbers of invocations on all the images 
in phase. 

The main loop takes the form: 

if(me <= m) then 

do k=l,log2 images() 
i f ( mod ( me- 1,2 * span ) < span ) then 

my_partner = me + span 

else 
my_partner = me - span 

end i f 

call sync_team( my_partner 

work(:) : x(:) [my_partner] 
call sync_team( my__partner 

x(:) = x(:) + work(:) 

span = span*2 
end do 

end i f 

and there needs to be a final step where the last r images get their results: 

if (me <= rem images() ) then 

call sync team(me+m) 

x(:) [me+m] = x(:) 

else if (me>m) then 

call sync_team (me-m) 
end i f 
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5 Comparison with other parallel programming models 
Most other proposals for parallel programming models for the Fortran language are based either on directives 
(for example, HPF, see Koebel et al. 1994 and OpenMP 1997) or on libraries (for example, MPI 1995 and 
MPI-2 1997). What are the advantages of the co-array extension? 

Compiler directives were originally designed as temporary expedients to help early compilers recognize 
vectorizable code, but have become 'languages' superimposed on languages. Some directives are really 
executable statements, which we see, as misleading. 

Such a programming model throws the burden onto the programmer's shoulders as "much as the 
message-passing model does. The programmer has to decide what parts of the code are serial and what 
variables to distribute and how. The programmer makes sure the directives are consistent throughout the 

program. The programmer identifies any memory race conditions and inserts appropriate directives to 
eliminate them. 

On a distributed memory computer, HPF directives tempt the programmer to underestimate the importance of 
localizing computation and minimizing communication. It often becomes clear that good performance 
requires the same attention to detail as for the message-passing model. HPF includes extrinsic procedures so 
that the programmer can drop out of the directiw~-based model into the message-passing model where all the 
details of distributed memory must be handled explicitly. After mastering all the intricacies of compiler 
directives, the programmer throws away most of the global information contained in them to obtain good 
performance. 

Some programmers, encountering co-array syntax for the first time, point out that compiler directives can be 
used to mimic the co-array programming style. Given a Co-Array Fortran program, it is sometimes easy to add 
directives to produce an artificial directive-based solution. To distribute data and work using directives, the 
programmer may add artificial extra dimensions, which propagate through the entire code carrying along 
global information that is unimportant in most of the code. The co-array programming model shows that the 
directives and the extra dimensions are not only cumbersome but also superfluous. Directive-based models 
require compilers to recognize and to implement long lists of directives, which may or may not behave the 
same way on all platforms. Co-Array Fortran requires compilers to recognize only a simple extension to the 
language. 

In some cases, especially when code does not translate naturally into data parallel array syntax, this technique 
of adding extra dimensions for emulating Co-Array Fortran syntax may be the only technique that works 
efficiently. But this technique does not use the data parallel programming model in the way that it was 
intended. It mimics message-passing, which is hard enough with all its bookkeeping, and then adds another 
layer of difficulty with directives. Co-Array Fortran requires the same bookkeeping but removes the artificial 
directives. 

What about using a library-based model? The Co-Array Fortran philosophy is that the foundation for a parallel 
programming model should be simple with more complicated libraries erected on top of the foundation. 
Basing a parallel model on a complicated library followed by ever more complicated libraries on top of 
libraries makes the programmer's job more difficult not simpler. 

Even a simple library like the one-sided SHMEM library, which has become the model of choice for writing 
parallel applications for the CRAY-T3D and the CRAY-T3E, has a number of limitations. (Sawdey et al. 

1995). Data used for communication must be allocated statically, normally in common blocks, making 
dynamic memory management difficult. Default variable sizes change from machine to machine causing 
portability problems. The programmer is restricted to fixed communication patterns supported by the library 
and is allowed to communicate with only one memory image at a time. Memory images must be linearized 
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starting at zero. Library functions normally block until transfers complete and the overhead from subroutine 
calls lowers efficiency for fine-grained communication. 

Co-array syntax removes the requirement for static memory allocation. The compiler knows variable sizes. 
The programmer can write arbitrary communication patterns for arbitrary variable types. The programmer 
defines the memory grid and the numbering scheme and can change them anywhere that it makes sense to do 
so. The compiler generates in-line code that it can optimize to support fine-grained communication patterns. 
Execution need not block until communication completes and communication with more than one memory 
image at a time is possible. 

Another library-based model is BSP (Bulk Synchronous Programming) (Valiant 1990; Hill, McColl, 
Stefanescu, Goudreau, Lang, Rao, Suel, Tsantilas, and Bisseling 1997), which is close to Co-Array Fortran. 
The computation proceeds in discrete steps, altemating between a step of independent computation involving 
no communication and a step of communication involving no computation. Each step is terminated with a 
global barrier, equivalent to sync_all ( ) .  

MPI (MPI 1995, MPI-2 1997) is a de-facto standard for the two-sided message-passing model (Gropp, Lusk, 
and Skjellum 1994). It is actually a C library that may be called from Fortran, but there are serious 
inconsistencies with Fortran 90: 

1. Some MPI subroutines accept arguments with differing types (choice argments). 

2. Some MPI subroutines accept arguments with differing array properties (sometimes arrays and 
sometimes scalars that are not array elements). 

3. Many MPI routines assume that actual arguments are passed by address and that copy-in copy-out does 
n o t  o c c u r .  

4. An MPI implementation may read or modify user data (e.g. communication buffers used by nonblocking 
communications) after return. 

Further, the calls to MPI procedures require many arguments, which leads to code that is hard to understand 
and therefore liable to bugs. A simple communication pattern may turn into an arcane code sequence. Co-array 
syntax, on the other hand, requires no include files, no status buffers, no model initialization, no message tags, 
no error codes, no library-specific variables, and no variable size information. Moving an arbitrarily 
complicated Fortran 90 data structure creates no problem for co-array syntax, but there is no simple equivalent 
in MPI. 

The following example is due to Alan Wallcraft of the Naval Research Laboratory, Stennis Space Center, 
Mississippi, and comes from an actual halo exchange subroutine. He comments: ' The co-array version is 
much easier for Fortran 90 programmers to understand, and it is typically 2~3 times faster than any MPI 
version on SMP/DSM systems'. 

Co-Array Fortran: 

call sync_all(imgi(nproc-l:nproc+l)) 
ai(:, :,4:4)=ai(:, :,i:i) [imgi(nproc-l)] 
ai(:, :,5:6)=ai(:, :,2:3) [imgi(nproc+l)] 
call sync all(imgi(nproc-l:nproc+l)) 

The fastest MPI version depends on the machine, but the following is usually fast: 

if (nfirst.eq.O) then 
nfirst = 1 
call mpi_send_init(ai(l,l,l), ihp*ip,mpi_real,imgi(nproc+l),9905, & 

mpi_comr~wor id, mpireq ( 1 ) , mpierr ) 
call mpi_send_init(ai(l,l,2) ,2*ihp*ip,mpi_real,imgi(nproc-l) ,9906, & 
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call 

call 

mpi_comn~world,mpireq(2),mpierr) 
mpi_recv_init(ai(l,l,4), ihp*ip,mpi_real,imgi(nproc-l),9905, & 

mpi comn~world,mpireq(3),mpierr) 
mpi recv init(ai(l,l,5),2*ihp*ip,mpi real,imgi(nproc+l),9906, & 

mpi_comr~world,mpireq(4),mpierr) 
endif 
call mpi_startall(4, ~pireq, mpierr) 
call mpi_waitall( 4, mpireq, mpistat, mpierr) 

6 Summary 
We conclude with a summary of the features of Co-Array Fortran. 

1. A Co-Array Fortran program is replicated to images with indices 1, 2, 3 .... and runs asynchronously on 

them all. The number of images is fixed throughout execution. 

2. Variables, but not structure components, may be declared with trailing dimensions in square brackets. 
These are called co-arrays and the trailing dimensions, called co-dimensions, provide access from one 
image to data on any other image. The co-size of a co-array is always equal to the number of images. 

3. A co-array may be of assumed co-size or be allocatable. 

4. There is implicit synchronization of all images in association with each allocation or deallocation of a 

co-array. 

5. Normal array syntax is extended to include square brackets and the resulting objects are called co-array 

subobjects. A co-array subobject may appear in an expression within parentheses or as an operand of an 
intrinsic operation; in both cases, the belhaviour is as if a temporary array were allocated on the local 
image and the data copied to it from other images. A co-array subobject may appear on the left of an 
intrinsic assignment. The rank of a co-array subobject is the sum of its local rank and its co-rank and 
must not exceed seven. The shape is the concatenation of its local shape and its co-shape. Conformance 

in array expressions and assignments is by shape. 

6. A reference to a co-array without square brackets is a reference to the local object. 

7. Dummy arguments, but not function results, may be co-arrays. The corresponding actual argument must 
be the name of co-array or a subobject of a co-array without any square brackets or component selection. 

The interface must be explicit. The co-array properties are specified afresh without regard to the co-array 
properties of the actual argument. The co-array properties are disregarded in applying the rules for 

argument association and resolution of generic invocations. 

8. There are intrinsic functions that return the number of images, the base-2 logarithm of the number of 
images, and the remainder after the largest integer power of 2 is subtracted from the number of images. 

9. There is an intrinsic subroutine for synchronizing the executing image with another image, a set of other 

images, or all other images. 

10. Co-arrays are not permitted to be pointers, but a co-array may be of a derived type with pointer 
components. Such a component is restricted to the role of an allocatable component. A pointer is not 
permitted to become associated with a co-array. 

11. There is an intrinsic function that returns the index of the executing image or the co-subscripts of a 
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co-array that denote data on the executing image. 

12. Input and output is performed independently by each image. However, there is a single file system and a 
single set of units shared by all images. The new keyword TEAM is used to identify which images may 
perform I/O on a given unit. There is an intrinsic for marking the progress of input-output on a unit. 

13. Execution of a STOP on any images causes all images to cease execution. 

At the beginning of this paper, we asked the question 'What is the smallest change required to convert Fortran 
95 into a robust, efficient parallel language?'. The answer to our question is contained in just nine pages of text 
in Section 3, which describes a simple syntactic extension to Fortran 95. The rest of the paper contains 
examples to illustrate the simplicity and elegance of co-array syntax, which places enormous power and 
flexibility in the hands of the programmer. We feel that once Fortran programmers begin to use co-array 
syntax, it will become the model of choice for parallel programming. 
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Appendix 1. Extension to allow co-array subobjects as actual 
arguments 
A possible extension of the language would allow co-array subobjects as actual arguments. In this appendix, 
we give the additional rules that such an extension would imply. 

If a co-array subobject of nonzero co-rank is associated as an actual argument with a dummy argument of a 
procedure with no co-array dummy arguments, the behaviour is as if copy-in copy-out is employed. This 
allows all Fortran 95 intrinsics and application code procedures to be referenced with actual arguments that are 
co-array subobjects. 

To avoid hidden references to other images, a co-array subobject is not permitted as an actual argument 
corresponding to a pointer dummy argument. 

In a generic procedure reference, including a defined operation or a defined assignment, the ranks and the 
co-ranks of the actual and corresponding dummy arguments must match if any dummy argument is a co-array 
and the actual argument is a co-array subobject. 

Two procedures are permitted to be overlaid in a genetic interface if a non-optional argument differs in rank or 
co-rank. For example, the following interface is valid: 

subroutine subl(a) 
real a( : ) 

end subroutine subl 
subroutine sub2(b) 

real b(:) [:] 
end subroutine sub2 
subroutine sub3(c) 

real c(:, :) 
end subroutine sub3 
subroutine sub4(d) 

real d[:, :] 
end subroutine sub4 
subroutine sub5(e) 

real el:] 
end subroutine sub5 
interface sub end 

Given the array 

real :: c(lO) [*] 

the following calls are valid: 

call sub(c) 
call sub(c(:)) 
call sub(c(1) [:]) 
call sub(c(:) [:]) 

' Calls subl 
! Calls subl 
! Calls sub5 
! Calls sub2 

In resolving a generic call, a specific procedure that matches in rank and co-rank is given preference to a 
procedure with no co-array arguments that matches only in rank. For example, if s u b 5  were removed from 
the above interface, 

call sub(c(1) [:]) 

would result in a call to s u b l .  

The following intrinsic procedure is added: 

i m a g e  i n d i c e s  ( s o u r c e )  is an inquiry function that returns the indices of the images on which a 
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co-array subobject resides. 

A2.1 Sequence association 

For a co-array subobject actual argument of nonzero co-rank in a procedure reference that is not generic, the 
rules of sequence association are applied separately to the local and co-array parts. The co-ranks of the actual 
and dummy arguments are permitted to differ. For example, the following is permitted: 

call sub(a[:, :]) 

subroutine sub(a) 
real :: a[*] 

The local ranks are allowed to differ, except that if one is zero, so is the other. The two correspondences are 
independent. One says how the storage is arranged on each image (and it is the same on each) and the other 
says how the image addressing will be arranged. We therefore need something for images that is akin to the 
array element order in Fortran 95. 

The images of a co-array or co-array subobject form a sequence called the image order.  For a co-array that is 
not a dummy argument associated with a co-array subobject, the images are 1, 2, 3 . . . .  For a co-array 
subobject, the images are selected from those of its parent. For a dummy argument associated with a co-array 
subobject, the images are selected from those of the associated actual argument. The position of an arbitrary 
image element is determined by the subscript order value of the subscript list designating the image element 
using the same formulas as those for computing ordinary subscript order values. 

Note that the image indices of a dummy CO-0JTay associated with a co-array subobject need not commence at 
one and need not be contiguous. Consider for example, 

real a(lO0) [32] 

call sub(a(:) [5:30:5] .... ) 

Here, the first dummy argument of sub will be a co-array that resides on images with indices 5, 10, 15 . . . . .  
The intrinsic procedure i m a g e  i n d i c e s  is available to provide lists of image indices when needed. For 
example, i m a g e _ i n d i c e s ( a ( : )  [ 5 : 3 0 : 5 ] )  has the value ( / 5 , 1 0 , 1 5 , 2 0 , 2 5 , 3 0 / ) .  

A restriction is needed to avoid the possibility of data redistribution across a procedure interface. Hence, if the 
parent of the actual argument is of assumed co-shape, the local ranks and the co-ranks must both agree. Also, 
restrictions are needed so that the implementation nevers needs to perform copy-in copy-out when the dummy 
argument is a co-array; for example, if the dummy argument has explicit local shape, the actual argument must 
not have assumed local shape. 
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Appendix 2. Extension to allow co-array pointers 
A possible extension of the language would allow co-array pointers• In this section, we give the additional 
rules that such an extension would imply. 

A co-array may be a pointer or a target• In the absence of pointers, the whole of a co-array can be referenced as 
an actual argument by use of array syntax such as P ( : ) [ : ]. If P is a co-array pointer, this would refer to the 
target• We also need a notation for the whole of the pointer, and have chosen to use the name followed an 

empty pair of square brackets, for example, P [ ]. 

The ALLOCATE statement is available for a pointer and the rules of the Section 2.6 apply in this case too. In 
order not to hide communication inside a pointer, pointer assignment for a co-array pointer must be limited to 
co-array targets• The pointer must provide both a means to access local data without any square brackets and a 
means to address data on other images through square brackets• To ensure that this is achieved, we require the 
pointer and its target to have the same local rank and the same co-rank. For example, the pointer assignment in 

the code 

REAL, POINTER : :  P ( : )  [ : ] ,  T ( : , : )  [ : , : ]  

P[] => T(I, :) [:,2] 

tells us that the sections P ( : ) and T ( 1,  : ) are identical, as are the sections P ( 1 ) [ : ] and T ( 1 , 1  ) [ : ,  2 ]. 
There is no need for automatic synchronization at a pointer assignment statement, since the statement involves 

only local data and affects the later action only of the current image. 

A co-array .pointer is not permitted in a pointer assignment statement without the empty pair of square 
brackets, that is, both the array and co-array parts must be pointer assigned together. 

Appendix 3. The synchronization intrinsics in Co-Array 
Fortran 
In this appendix, we explain how a simple module for sync_team and sync_all may be constructed in 
Co-Array Fortran, assuming that the intrinsic s y n c  m e m o r y  is available• Improved code is accessible by ftp 

from j k r .  c c .  r l .  a c .  u k  in the directory p u b / c a f .  

We identify corresponding calls of s y n c _ t e a m  by counting, for each pair p and q, the number of invocations 

c(p,q) for a team including image p on image q. I f p  and q belong to more than one team, their calls for each 
team are required to be in the same order, so the calls correspond if and only if c(p,q) and c(q,p) have the same 
value• 

In a long run on a powerful machine, the counts c(p,q) may get very large• We therefore use long integers, 
declared as with k i n d = s e l e c t e d  i n t _ k i n d ( 1 8 ) ,  to hold these counts• On a machine without such 
integers, extra code will be needed; for example, the counts might be held as a pair of integers. 

The basic mechanism we use to force an image to wait for another image is to make it execute a tight loop of 
code until co-array data is altered by the other image. Here is an example, where we hold the count c(p,q) in 
the co-array element c (p) [q ] .  

do ! Wait for the count on image q to be big enough 
call sync memory 
if(c(me) [q] >= c(q) ) exit 
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e n d  do  

Note the presence of s y n c _ m e m o r y  in the loop. This is essential. Without it, the compiler could legitimately 
make a single local copy of c(me)[q] and execute the loop for ever. On some systems, the loop may slow the 
execution of  other images by the continual reference to data on image q. This may be alleviated by inserting 
some code ahead of the e n d  do  statement to slow the loop. We will not do this here, but it illustrates that 
tuning of  the code may be needed for efficient working on a particular machine. 

We begin with a simple module for s y n c _ t e a m  with w a i t  present. The counts c(p,q) are held in the 
co-array c. This has to be allocamble because the number of images is not a Fortran constant. It means that the 
initialization subroutine s y n c  s t a r t  is needed to allocate the co-array and initialize its value. This must be 
called on all images. We must not allow any image to return until all images have initialized this array. We do 
this here by another allocate statement, since this causes synchronization. 
module sync 

implicit none 
save 

integer, private : : this image, num_images 
integer, parameter :: long=selected_int_kind(18) 
integer(long), allocatable, private : : c(:) [:] ,dummy(:) [:] 
integer, private :: k,me,nimg,q 

contains 
subroutine sync start ! This must be called initially on all images 

me = this_image() 
nimg = hum_images() 
allocate (c(nimg) [*] ) 
c(:) = 0 

call sync memory 
allocate ( dummy(0)[*] ) ! Synchronize 

end subroutine sync_start 

subroutine 
integer, intent(in) :: 
call sync_memory 
c(team) = c(team) + 1 
do k= l,size(wait) 

q = wait(k) 
do ! spin waiting for 

call sync_memory 
if(c(me) [q] >= c(q) 

enddo 
enddo 

call sync_memory 
subroutine sync team end 

sync team(team,wait) 
team(:),wait(:) 

image wait(k) 

) exit 

end module sync 

The following additions provide for the cases where team is scalar or wait is absent 
interface sync_team 

module procedure sync_team, sync_team0, sync_teaml, & 
sync_team2 syncteam3, sync_team4 

end interface 

subroutine sync team0(team) 
integer, intent(in) :: team 
call sync_team ((/me,team/) 

end subroutine sync team0 
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subroutine sync_teaml(team) 
integer, intent(in) :: team(:) 
call sync_team(team, team) 

end subroutine sync_teaml 

subroutine sync_team2(team,wait) 
integer, intent(in) :: team(:) 
integer, intent(in) :: wait 
call sync_team(team, (/wait/)) 

end subroutine sync_team2 

subroutine sync_team3(team,wait) 
integer, intent(in) :: team 
integer, intent(in) :: wait 
call sync_team ((/me,team/),(/wait/) 

end subroutine sync_team3 

subroutine sync_team4(team,wait) 
integer, intent(in) :: team 
integer, intent(in) :: wait(:) 
call sync_team ((/me,team/),wait) 

end subroutine sync_team4 

The following additions provide for sync_all 

integer, allocatable, private 
interface sync_all 

module procedure sync_all, 
end interface 

:: all(:) 

sync_alll 

In sync_start 
allocate (all(nimg)) 
all = (/ (k,k=l,nimg) /) 

subroutine sync_all 
call sync_team (all,all) 

end subroutine sync_all 

subroutine sync_alll(wait) 
integer, intent(in) :: wait(:) 
call sync_team(all,wait) 

end subroutine sync_alll 

subroutine sync_all2(wait) 
integer, intent(in) :: wait 
call sync_team(all, (/wait/)) 

end subroutine sync all2 

sync_all2 

The subroutine sync_team may also include checks that me is in team, that the element of team are in 
range, that there are no repeated values, and that each value in w a i t  is in team.  These checks may be under 
the control of a public flag in the module, so that they can be omitted in production code when the developer is 
confident that the errors will not occur. 

The number of cycles of  the do construct for the wait may be limited, so that deadlock can be detected. If the 
limit is reached, we recommend that a message be printed showing the index p of the executing image, the 
index q of  the image for which it is waiting, the team, and the counts c(p,q) and c(q,p). 
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